26 research outputs found

    Restoration of renal TIMP3 levels via genetics and pharmacological approach prevents experimental diabetic nephropathy

    Get PDF
    Background Diabetic nephropathy (DN), one of the major complications of diabetes, is characterized by albuminuria, glomerulosclerosis, and progressive loss of renal function. Loss of TIMP3, an Extracellular Matrix bound protein affecting both inflammation and fibrosis, is a hallmark of DN in human subjects and mouse models.Methods This study was designed to provide evidences that the modulation of the system involving TIMP3 and its target A Disintegrin And Metalloproteinase 17 (ADAM17), may rescue kidney pathology in diabetic mice. Mice with cell-targeted overexpression of TIMP3 in myeloid cells (MacT3), podocyte-specific ADAM17 knockout mice ( increment PodA17), and DBA/2J mice, were rendered diabetic at 8 weeks of age with a low-dose streptozotocin protocol. DBA/2J mice were administered new peptides based on the human TIMP3 N-terminal domain, specifically conjugated with G3C12, a carrier peptide highly selective and efficient for transport to the kidney. Twelve weeks after Streptozotocin injections, 24-hour albuminuria was determined by ELISA, kidney morphometry was analyzed by periodic acid-shift staining, and Real Time-PCR and western blot analysis were performed on mRNA and protein extracted from kidney cortex.Results Our results showed that both genetic modifications and peptides treatment positively affect renal function and structure in diabetic mice, as indicated by a significant and consistent decline in albuminuria along with reduction in glomerular lesions, as indicated by reduced mesangial expansion and glomerular hypertrophy, decreased deposition of extracellular matrix in the mesangium, diminished protein expression of the NADPH oxidases 4 (NOX4), and the improvement of podocyte structural markers such as WT1, nephrin, and podocin. Moreover, the positive effects were exerted through a mechanism independent from glycemic control.Conclusions In diabetic mice the targeting of TIMP3 system improved kidney structure and function, representing a valid approach to develop new avenues to treat this severe complication of diabetes

    Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment

    Get PDF
    Abiraterone acetate (ABI) is associated not only with a significant survival advantage in both chemotherapy-naive and -treated patients with metastatic castration-resistant prostate cancer (mCRPC), but also with a delay in time to development of Skeletal Related Events and in radiological skeletal progression. These bone benefits may be related to a direct effect on prostate cancer cells in bone or to a specific mechanism directed to bone microenvironment. To test this hypothesis we designed an in vitro study aimed to evaluate a potential direct effect of ABI on human primary osteoclasts/osteoblasts (OCLs/OBLs). We also assessed changes in bone turnover markers, serum carboxy-terminal collagen crosslinks (CTX) and alkaline phosphatase (ALP), in 49 mCRPC patients treated with ABI.Our results showed that non-cytotoxic doses of ABI have a statistically significant inhibitory effect on OCL differentiation and activity inducing a down-modulation of OCL marker genes TRAP, cathepsin K and metalloproteinase-9. Furthermore ABI promoted OBL differentiation and bone matrix deposition up-regulating OBL specific genes, ALP and osteocalcin. Finally, we observed a significant decrease of serum CTX values and an increase of ALP in ABI-treated patients.These findings suggest a novel biological mechanism of action of ABI consisting in a direct bone anabolic and anti-resorptive activity

    Changes in bone turnover markers in patients without bone metastases receiving immune checkpoint inhibitors: An exploratory analysis

    Full text link
    Immune checkpoint inhibitors (ICIs) has revolutionized the treatment of different advanced solid tumors, but most patients develop severe immune-related adverse events (irAEs). Although a bi-directional crosstalk between bone and immune systems is widely described, the effect of ICIs on the skeleton is poorly investigated. Here, we analyze the changes in plasma levels of type I collagen C-terminal telopeptide (CTX-I) and N-terminal propeptide of type I procollagen (PINP), reference makers of bone turnover, in patients treated with ICIs and their associ-ation with clinical outcome.A series of 44 patients affected by advanced non-small cell lung cancer or renal cell carcinoma, without bone metastases, and treated with ICIs as monotherapy were enrolled. CTX-I and PINP plasma levels were assessed at baseline and after 3 months of ICIs treatment by ELISA kits.A significant increase of CTX-I with a concomitant decreasing trend towards the reduction of PINP was observed after 3 months of treatment. Intriguingly, CTX-I increase was associated with poor prognosis in terms of treatment response and survival. These data suggest a direct relationship between ICIs treatment, increased osteoclast activity and potential fracture risk.Overall, this study reveals that ICIs may act as triggers for skeletal events, and if confirmed in larger pro-spective studies, it would identify a new class of skeletal-related irAEs

    БиологичСскоС ΠΈ клиничСскоС дСйствиС Π°Π±ΠΈΡ€Π°Ρ‚Π΅Ρ€ΠΎΠ½Π° Π½Π° Π°Π½Ρ‚ΠΈΡ€Π΅Π·ΠΎΡ€Π±Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΠΈ Π°Π½Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ микроокруТСния костной Ρ‚ΠΊΠ°Π½ΠΈ

    Get PDF
    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π±ΠΈΡ€Π°Ρ‚Π΅Ρ€ΠΎΠ½Π° Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° (АА) сопровоТдаСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ выТиваСмости ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с мСтастатичСским кастрационно-рСзистСнтным Ρ€Π°ΠΊΠΎΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠΌΠšΠ Π ΠŸΠ–), Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Π΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎ развития рСнтгСнологичСского прогрСссирования заболСвания. Π­Ρ‚ΠΈ прСимущСства ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ костных мСтастатичСских ΠΎΡ‡Π°Π³ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны с нСпосрСдствСнным воздСйствиСм Π½Π° мСтастатичСскиС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°ΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π² костях ΠΈΠ»ΠΈ со спСцифичСскими ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° костноС ΠΌΠΈΠΊΡ€ΠΎΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ эти Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹, ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅- Π»ΠΈ исслСдованиС in vitro, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ Π½Π° ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСйствия AA Π½Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ остСокласты (ΠžΠšΠ›) / остСобласты (ΠžΠ‘Π›); in vivo ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ измСнСния ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² костного ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… Ρ‚Π΅Π»ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° (CTX, ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ костной Ρ€Π΅Π·ΠΎΡ€Π±Ρ†ΠΈΠΈ) ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ фосфатазы (Π©Π€) Ρƒ 49 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠšΠ Π ΠŸΠ–, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Наши Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ AA ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠžΠšΠ›, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠžΠšΠ›-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² TRAP (тартратрСзистСнтная кислая фосфатаза), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ катСпсина К ΠΈ матриксной ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Ρ‹-9. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, AA способствовал Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠžΠ‘Π› ΠΈ ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, увСличивая ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ спСцифичных для ΠžΠ‘Π› Π³Π΅Π½ΠΎΠ² RUNX2 (Ρ„Π°ΠΊΡ‚ΠΎΡ€ транскрипции-2, содСрТащий Π΄ΠΎΠΌΠ΅Π½ Runt), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π©Π€ ΠΈ ΠΎΡΡ‚Π΅ΠΎΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π°. Π’Π°ΠΊΠΆΠ΅ ΠΌΡ‹ наблюдали in vivo Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС уровня CTX Π² сывороткС ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Π©Π€ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Π­Ρ‚ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ биологичСский ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия AA, состоящий Π² прямом анаболичСском ΠΈ Π°Π½Ρ‚ΠΈΡ€Π΅Π·ΠΎΡ€Π±Ρ‚ΠΈΠ²Π½ΠΎΠΌ влиянии Π½Π° ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ.ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π±ΠΈΡ€Π°Ρ‚Π΅Ρ€ΠΎΠ½Π° Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° (АА) сопровоТдаСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ выТиваСмости ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с мСтастатичСским кастрационно-рСзистСнтным Ρ€Π°ΠΊΠΎΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠΌΠšΠ Π ΠŸΠ–), Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Π΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎ развития рСнтгСнологичСского прогрСссирования заболСвания. Π­Ρ‚ΠΈ прСимущСства ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ костных мСтастатичСских ΠΎΡ‡Π°Π³ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны с нСпосрСдствСнным воздСйствиСм Π½Π° мСтастатичСскиС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°ΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π² костях ΠΈΠ»ΠΈ со спСцифичСскими ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° костноС ΠΌΠΈΠΊΡ€ΠΎΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ эти Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹, ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅Π»ΠΈ исслСдованиС in vitro, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ Π½Π° ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСйствия AA Π½Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ остСокласты (ΠžΠšΠ›) / остСобласты (ΠžΠ‘Π›); in vivo ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ измСнСния ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² костного ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… Ρ‚Π΅Π»ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° (CTX, ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ костной Ρ€Π΅Π·ΠΎΡ€Π±Ρ†ΠΈΠΈ) ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ фосфатазы (Π©Π€) Ρƒ 49 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠšΠ Π ΠŸΠ–, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Наши Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ AA ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠžΠšΠ›, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠžΠšΠ›-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² TRAP (тартратрСзистСнтная кислая фосфатаза), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ катСпсина К ΠΈ матриксной ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Ρ‹-9. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, AA способствовал Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠžΠ‘Π› ΠΈ ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, увСличивая ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ спСцифичных для ΠžΠ‘Π› Π³Π΅Π½ΠΎΠ² RUNX2 (Ρ„Π°ΠΊΡ‚ΠΎΡ€ транскрипции-2, содСрТащий Π΄ΠΎΠΌΠ΅Π½ Runt), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π©Π€ ΠΈ ΠΎΡΡ‚Π΅ΠΎΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π°. Π’Π°ΠΊΠΆΠ΅ ΠΌΡ‹ наблюдали in vivo Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС уровня CTX Π² сывороткС ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Π©Π€ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Π­Ρ‚ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ биологичСский ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия AA, состоящий Π² прямом анаболичСском ΠΈ Π°Π½Ρ‚ΠΈΡ€Π΅Π·ΠΎΡ€Π±Ρ‚ΠΈΠ²Π½ΠΎΠΌ влиянии Π½Π° ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ

    Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions

    Get PDF
    Cabozantinib, a c-MET and vascular endothelial growth factor receptor 2 inhibitor, demonstrated to prolong progression free survival and improve skeletal diseaserelated endpoints in castration-resistant prostate cancer and in metastatic renal carcinoma. Our purpose is to investigate the direct effect of cabozantinib on bone microenvironment using a total human model of primary osteoclasts and osteoblasts. Osteoclasts were differentiated from monocytes isolated from healthy donors; osteoblasts were derived from human mesenchymal stem cells obtained from bone fragments of orthopedic surgery patients. Osteoclast activity was evaluated by tartrate resistant acid phosphatase (TRAP) staining and bone resorption assays and osteoblast differentiation was detected by alkaline phosphatase and alizarin red staining. Our results show that non-cytotoxic doses of cabozantinib significantly inhibit osteoclast differentiation (p=0.0145) and bone resorption activity (p=0.0252). Moreover, cabozantinib down-modulates the expression of osteoclast marker genes, TRAP (p=0.006), CATHEPSIN K (p=0.004) and Receptor Activator of Nuclear Factor k B (RANK) (p=0.001). Cabozantinib treatment has no effect on osteoblast viability or differentiation, but increases osteoprotegerin mRNA (p=0.015) and protein levels (p=0.004) and down-modulates Receptor Activator of Nuclear Factor k B Ligand (RANKL) at both mRNA (p < 0.001) and protein levels (p=0.043). Direct cell-to-cell contact between cabozantinib pre-treated osteoblasts and untreated osteoclasts confirmed the indirect anti-resorptive effect of cabozantinib. We demonstrate that cabozantinib inhibits osteoclast functions "directly" and "indirectly" reducing the RANKL/osteoprotegerin ratio in osteoblasts
    corecore